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Abstract—The Self-Sovereign Identity (SSI) is a decentralized
paradigm enabling full control over the data used to build and
prove the identity. In Internet of Things networks with security
requirements, the Self-Sovereign Identity can play a key role and
bring benefits with respect to centralized identity solutions. The
challenge is to make the SSI compatible with resource-constraint
IoT networks. In line with this objective, the paper proposes and
discusses an alternative (mutual) authentication process for IoT
nodes under the same administration domain. The main idea is
to combine the Decentralized IDentifier (DID)-based verification
of private key ownership with the verification of a proof that
the DID belongs to an evolving trusted set. The solution is built
around the proof of membership notion. The paper analyzes
two membership solutions, a novel solution designed by the
Authors based on Merkle trees and a second one based on the
adaptation of Boneh, Boyen and Shacham (BBS) group signature
scheme. The paper concludes with a performance estimation and
a comparative analysis.

Index Terms—Self-Sovereign Identity, Decentralized IDenti-
fiers, Proof of Membership, Group Signatures, Merkle Trees,
Trust, Internet of Things.

I. INTRODUCTION

The Self-Sovereign Identity (SSI) [1] is a decentralized
digital identity paradigm that gives a peer full control over
the data it uses to build and to prove its identity. The overall
SSI stack, depicted in Fig. 1, enables a new model for trusted
digital interactions.

The Layer 1 is implemented by means of any Distributed
Ledger Technology (DLT) acting as the Root-of-Trust (RoT)
for identity data. In fact, DLTs are distributed and immutable
means of storage by design [2]. A Decentralized IDentifier
(DID) [3] is the new type of globally unique identifier
designed to verify a peer. The DID is a Uniform Resource
Identifier (URI) of the following form:

did:method-name:method-specific-id

where method-name is the name of the DID Method used to
interact with the DLT and method-specific-id is the pointer to
the DID Document stored on the DLT, denoted as index in
this paper for simplicity.

Thus, DIDs associate a peer with a DID Document [3] to
enable trustable interactions with it. The DID Method [3], [4]
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Fig. 1. The Self-Sovereign Identity stack.

is the software implementation used by a peer to interact with
the DLT. In accordance with W3C recommendation [3], a DID
Method must provide the primitives to:

• create a DID, that is, generate an identity key pair
(skid, pkid) for authentication purposes, the correspond-
ing DID Document containing the public key of the pair
pkid and store the DID Document into the distributed
ledger at the index pointed by the DID,

• resolve a DID, that is, retrieve the DID Document from
the index on the ledger pointed to by the DID,

• update a DID, that is, generate a new key pair (sk′id, pk
′
id)

and store a new DID Document at the same index or at a
new index if the subject requires changing the DID, and

• revoke a DID, that is, provide an immutable evidence on
the ledger that a DID has been revoked by the owner.

The DID Method implementation is ledger-specific and it
makes the upper layers independent of the DLT of choice.

The Layer 2 makes use of DIDs and DID Documents to
establish a secure channel between two peers. In principle,
both peers prove the ownership of their private key skid bound
to the public key pkid in their DID Document that is stored
on the distributed ledger. While the Layer 2 leverages DID
technology (i.e. the security foundation of the SSI stack) to
begin the authentication procedure, the Layer 3 finalizes it
and deals with authorization to services and resources with
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Fig. 2. Mutual authentication between two peers in the SSI framework.

Verifiable Credentials (VCs) [5].
A VC is an unforgeable, secure, and machine verifiable

digital credential that contains further characteristics of the
digital identity of a peer than its key pair (skid, pkid), the
DID and the related DID Document.

The combination of the key pair (skid, pkid), the DID, the
corresponding DID Document and at least one VC forms the
digital identity in the SSI framework. This composition of the
digital identity reflects the decentralized nature of SSI. There
is no authority that provides all the components of the identity
to a peer, and no authority is able to revoke completely the
identity of a peer. Moreover, a peer can enrich its identity with
multiple VCs issued by different Issuers.

The Layer 3 works in accordance with the Triangle-of-Trust
depicted in Fig. 1. Three different roles coexist:

• Holder is the peer that possesses one or more VCs and
that generates a Verifiable Presentation (VP) to request a
service or a resource from a Verifier;

• Issuer is the peer that asserts claims about a subject,
creates a VC from these claims, and issues the VC to
the Holders.

• Verifier is the peer that receives a VP from the Holder
and verifies the two signatures made by the Issuer on
the VC and by the Holder on the VP before granting the
access to a service or a resource based on the claims.

The VC contains the metadata to describe properties of
the credential (e.g. context, ID, type, Issuer of the VC,
issuance and expiration dates) and most importantly, the
DID and the claims about the identity of the peer in the
credentialSubject field.

The Issuer signs the VC to make it an unforgeable and
verifiable digital document. The Holder requests access to
services and resources from the Verifier by presenting a VP.
A VP is built as an envelope of the VC. The VC is issued
by an Issuer and a signature is made by the Holder with
his skid. Issuers are also responsible for VCs revocation for
cryptographic integrity and for status change purposes [5].

On top of these three layers, it is possible to build any
ecosystem of trustable interactions among peers. The authen-
tication process at the core of Trust between two SSI-aware
peers is depicted in Fig. 2.

In principle, the peers use an (ephemeral) Diffie–Hellman
key exchange to build up a confidential channel. Then, the
peers exchange their respective DIDs and prove the pos-
session of the skid associated to the pkid stored in their
corresponding DID Documents. This verification, in case of
success, ends up with a cryptographic trust between the two
peers while preventing the passive Man-in-the-Middle (MitM)
attack. However, in a permissionless distributed ledger, anyone
is entitled to create its own DID, therefore the procedure is
still vulnerable to active MitM attack. In fact, the (mutual)
authentication takes place only after the peers exchange and
verify the respective VCs. At that point, the peers establish a
secure communication channel.

There are Internet of Things (IoT) use cases in which
networks of nodes support or make themselves digital infras-
tructures with security requirements, such as (mutual) authen-
tication, confidentiality, and integrity. The SSI framework can
play a key role and bring benefits with respect to centralized
identity solutions [6]. The challenge is to make these solutions
compatible with resource constraints [7].

With the aim of pursuing this objective, the paper proposes
and discusses an alternative (mutual) authentication process
for IoT nodes under the same administration domain. Fi-
nalizing the authentication by means of VC verification at
Layer 3 is the most demanding operation of the authentication
procedure depicted in Fig. 2 due to the complex data model of
VCs [5]. The proposed alternative is to complement the DID-
based verification of the skid ownership with the verification
of a proof that a DID belongs to an evolving trusted set of
DIDs (i.e. the DID has not been created by an adversarial
node). In other words, the idea is to complement the DID-
based verification of the skid ownership with the verification
of a proof of membership and avoid the use of VCs. For the
sake of clarity, the membership concept refers to DIDs and
not to nodes.

From an implementation point of view, a node combines
the DID with the proof of membership and forwards them
to the counterpart node that proceeds with the verification of
the proof of membership and of the DID ownership (i.e. skid
ownership) to complete the authentication procedure.

This paper proposes and analyzes two membership solu-
tions for the purpose of implementing the new authentication
procedure: a novel solution based on Merkle trees [8] designed
by the Authors of this paper and a second solution built
as an adaptation of a well-known and largely used group
signature scheme proposed by Boneh, Boyen and Shacham
and conventionally referred to as BBS [9].

The paper presents and critically reviews the two proposed
solutions in four typical operational phases of an IoT network,
namely:

1) Provisioning: corresponding to the initial setup of the
IoT nodes in the network;

2) Operation: corresponding to the operation of the IoT
nodes when deployed on the field;

3) Secret rotation: corresponding to the update of node
identity keys (skid, pkid) and other relevant secret keys;
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Fig. 3. Example of Merkle tree with four Decentralized IDentifiers.

4) Network update: corresponding to the action of either
adding or removing an IoT node to/from the network.

II. MEMBERSHIP THROUGH MERKLE TREES

A Merkle tree, also known as a Hash tree, is a data structure
that is used to efficiently verify the integrity of large amounts
of data. It is named after its inventor, Ralph C. Merkle, who
first introduced the concept in a patent filed in 1979 [8].

The Merkle tree is here used to solve the membership
problem presented in Section I. In principle, the DIDs selected
by a node must be part of a Merkle tree whose root is
considered trusted.

A. Provisioning

The provisioning phase consists of the typical configuration
procedure, in a secure environment, of each node before their
deployment on the field.

Upon configuration, each node selects a first set of DIDs
that will use during the operation phase (i.e. defines the
indexes idxi of these DIDs). Then, the node generates au-
tonomously its own Merkle tree, as depicted in Fig. 3.

Basically, the node uses the selected indexes idxi as inputs
for a Hash function H(·): the outputs are the leaves of the
Merkle tree (e.g. leaf1 = H(idx1)). Reminding that every
element that is not a leaf is the digest of its child elements
(e.g. parent = H(child1|child2)), the construction consists in
hashing the previous two values until only a value remains;
this value is called ROOT .

In a possible design, all the leaves of the Merkle tree
can be calculated starting from a single master secret S.
A HMAC-based Extract-and-Expand Key Derivation Func-
tion [10] (HKDF) can generate a number of seeds si, to
be used as inputs for deriving the indexes of the DIDs.
That way, the node is required to store securely only S and
can regenerate the DIDs on the fly when needed during the
operation phase, thus avoiding the secure storage of the entire
set of DIDs.

After the construction of the Merkle tree, each node inter-
acts with a Trusted Party (TP). The identity key pair of the
TP is (skTP , pkTP ). The TP provides the public key pkTP to
the node and the node shares the ROOT of its Merkle tree
with the TP.

Once the TP has collected all the ROOT values from the
N nodes, it builds and publishes on the distributed ledger, at
a given well-know predefined index idxlist, the list of trusted
roots in the form:

{ROOT1, . . . , ROOTN , ROOTTP ;TS;SignatureskTP
}

where TS is a timestamp that provides the date and time of
list generation, and SignatureskTP

is the signature of the TP
made with its private key skTP .

All nodes have simple access to this list of trusted roots by
querying the DLT. The nodes verify SignatureskTP

with the
pkTP before consuming the list during the operation phase.

B. Operation

The nodes enter into digital interaction with the other nodes
after (mutual) authentication. Upon the selection of a DID
from the tree, a node generates the proof of membership that
it will use during the authentication procedure with another
node, as discussed in Section I. The proof of membership
coincides with the value of the Siblings of the corresponding
leaf. For example, if the node n1 selects DID1, the proof is:

(Sib1, Sib2)
.
= (H(idx2), H(H(idx3)|H(idx4))).

When an interaction between node n1 and a node n2 takes
place, first n2 sends a nonce to n1, meant to avoid replay
attacks. Then n1 sends DID1, the proof of membership and a
signature with its skid on the message H((Sib1, Sib2)|nonce)
(i.e. Sigskid

(H((Sib1, Sib2)|nonce)).
At that point, n2 verifies the signature with the pkid

retrieved from the DID Document pointed by DID1, then
it recalculates the root of the Merkle tree of node n1 as:

ROOT1 = H(H(H(idx1)|Sib1)|Sib2).

The authentication succeeds if ROOT1 is in the list of
trusted roots, otherwise n2 closes the communication. In case
of mutual authentication, the same procedure takes place in
both directions.

C. Secret rotation

Secret rotation is the process of replacing cryptographic
secrets with new ones periodically or in response to a critical
event. Key rotation is an example of this practice.

In case the TP needs to update its keys (skTP , pkTP ), the
TP is required to provide to all nodes in the network its new
public key pk′TP and, then, to sign and publish again the list
of trusted roots on the distributed ledger at idxlist.

Differently, when a node needs to update its identity keys
(skid, pkid), it selects a new DID in its Merkle tree, revokes
the previous one, and generates and stores the new DID
Document on the distributed ledger at the index pointed by
the new DID. The proof of membership it will use during
the authentication with another node changes accordingly, but
since the ROOT value does not change, the node does not
need to interact with the TP. In other words, it updates the DID
in full compliance with the SSI paradigm. Note that, identity
key rotation does not necessarily imply the selection of a new



DID, because W3C DID recommendation [3] allows a node
to update its DID Document without changing the DID.

A special case occurs when a node needs to update its
identity keys (skid, pkid) and it is using the last DID in the
Merkle tree (e.g. idx4 in Fig. 3). The node autonomously
generates a new Merkle tree and, then, shares the new ROOT ′

value with the TP upon (mutual) authentication. At that point,
the node updates the DID, selecting the DID from the new
tree, and the TP updates and publishes the new list of trusted
roots. This key rotation process can continue indefinitely
in normal operation phase in full compliance with the SSI
paradigm.

D. Network update

A new node can be deployed on the network without
disrupting the operation of the other nodes. When the provi-
sioning of the new node is concluded, the TP updates the list
of the trusted roots and publishes it on the distributed ledger
to inform the other nodes. The same happen when a node is
removed from the network for any reason; the TP updates the
list of trusted roots (i.e. removes the corresponding ROOT
value) and publishes it on the distributed ledger.

E. Critical analysis

The following aspects are worth to be remarked:

• the solution is compliant with the SSI principles, since
it does not affect the autonomy of a node to control its
identity data (skid, DID, DID document);

• the decentralized nature is respected; after the provi-
sioning phase, a node follows the SSI paradigm without
requiring major interactions with the TP;

• however, the role of the TP makes it a point of attack;
the TP private key skTP must be properly protected,
because an adversary capable to gain access to skTP can
manipulate the list of trusted roots;

• the solution scales with the number of nodes and it seems
to be appropriate also for networks with high update
frequency. Adding or removing a node only affects the
size of the list of trusted roots (i.e. proportional to the
number of active nodes) but it does not imply interactions
with the other nodes in the network;

• a trade-off exists between the size of the Merkle tree,
the size of the proof of membership (i.e. the number of
Siblings) and the number of interactions with the TP. The
larger the tree size, the larger the proof, but the lower the
number of interactions with the TP to send the root of a
new Merkle tree;

• the security of the membership solution relies on the
preimage resistance property of the hash function (i.e. it
is hard to invert) used to build the tree and on the HKDF
used as a source of randomness to build the seeds; in this
sense, it is reasonable to consider it quantum safe [11];

• both the Merkle tree and HKDF are mature technologies.
However, their combined use in the proposed solution
may need further security validation.

III. MEMBERSHIP THROUGH BBS GROUP SIGNATURE

The BBS group signature scheme [9] has been developed to
allow a member of the group to secretly sign a message on the
group’s behalf with its group private key gski; the signature of
any member can be verified with the unique group public key
gpk. Moreover, the scheme allows a TP to revoke the private
key of any member, triggering the update of the private keys
of all the other members and of the group public key.

The BBS scheme is here adapted to solve the membership
problem presented in Section I. In principle, a node proves
that its DID belongs to a trusted set by means of a BBS
signature. The paper here adopts the notation from [9] and,
when appropriate, directly refers to specific BBS algorithms,
namely KeyGen, Sign, V erify, Update, Open, Join, and
Revoke.

A. Provisioning

The provisioning phase consists of the common configura-
tion procedure in a secure environment of each node before
deployment on the field.

A TP supervises this phase and begins the provisioning by
performing the KeyGen algorithm. This step consists in the
generation of the TP key pair (skTP , pkTP ), the group public
key gpk, the TP group private key tpsk, and the private keys
gski for all nodes in the network.

The TP provides any node with its group private key gski,
the group public key gpk, the indexRL on the distributed
ledger where to retrieve a Revocation List, and the public
key pkTP to verify the TP signature on such list, as will be
explained in detail in Section III-B.

According to the original Join algorithm in [9], the TP
generates and gives a group private key gski to each node;
this protocol implies that the TP knows all the group private
keys, making it a single point of attack. An alternative Join
algorithm, proposed in [12], introduces the property of Strong
Exculpability (SE) and, for clarity, will be denoted as JoinSE

in the following discussion. The SE concept is an evolution
of the exculpability concept that was first introduced by [13].
In accordance with its definition in [12], [14], SE ensures that
no member of the group and not even the entity that issues
the private keys can forge a signature on behalf of another
group member.

The authors of BBS in [9] suggested acquiring the SE
property by generating each gski via a procedure in which
the TP only learns a share of gski. However, to the best
of our knowledge, beside this suggestion, no practical im-
plementation of the JoinSE algorithm for BBS has been
published. Therefore, we here propose for the first time an
implementation tailored to the BBS group signature.

Firstly, the KeyGen algorithm must be modified to add
one more base to the original gpk = (g1, g2, h, u, v, w)
where g1, h, u, v ∈ G1 and g2, w ∈ G2 with G1, G2

multiplicative cyclic groups of prime order. Accordingly, the
TP selects at random h1

R←− G1 and adds it to the new
gpk = (g1, g2, h, h1, u, v, w).

Then, the JoinSE algorithm can be constructed as follows:



1) the node ni selects at random yi
R←− Z∗

p and sends Y =

h−yi

1 to the TP;
2) given γ a TP’s random secret value defined as γ ∈ Z∗

p,

the TP selects xi
R←− Z∗

p, computes Ai = (g1Y )
1

γ+xi

and Hi = h
1

γ+xi
1 , and sends Hi to ni;

3) ni sends Bi = H−yi

i back to the TP;

4) the TP computes A′
i = Bi(g

1
γ+xi
1 ) and check if A′

i = Ai

to convince itself that ni knows yi;
5) if and only if previous step 4) succeeds, the TP sends

(Ai, xi) to ni;
6) finally, ni builds its entire private key gski = (Ai, xi, yi).
It is worth noting that only ni knows yi. The Discrete

Logarithm’s Problem (DLP) protects yi from being discovered
by the TP that, in fact, only knows Y = h−yi

1 and (Ai, xi). In
our solution ni proves the knowledge of the private key share
yi in Zero-Knowledge.

The Sign, V erify, Update, Open, Join, and Revoke
algorithms in [9] must be accordingly adapted to the new
definition of gski = (Ai, xi, yi). The adaptation consists in
adding the Zero-Knowledge proof of knowledge of the entire
group private key gski, following the same approach used in
constructing the JoinSE . These adaptations are here omitted
for conciseness.

B. Operation

A node generates the DID and enters into interaction with
other nodes of the network after proper (mutual) authentica-
tion. A node n1 computes the proof of membership (i.e. the
BBS signature) running the Sign algorithm using its gsk1 on
a digest computed as H(DIDn1

|nonce), where the nonce is
generated by the counterpart node n2 to avoid replay attacks.
The node n2 can verify the proof of membership with the
V erify algorithm using the group public key gpk and, then,
the ownership of skid of n1. In case of mutual authentication,
the same procedure takes place in the two directions.

In any case, each node must maintain its own group private
key and the group public key up to date. After the revocation
of a key gskr, all nodes must update their own private key
gski and gpk with the Update algorithm (see Sect. 7 in
[9]). The Update algorithm requires some knowledge of the
revoked private keys. For this reason, the TP publishes a list of
such knowledge, i.e. a Revocation List (RL), on the distributed
ledger at a well-know indexRL. All the nodes in the network
can easily access this list by querying the distributed ledger.

According to the new JoinSE algorithm, the RL contains
a processed version of the share of the revoked private keys
(gsk∗r , . . . , gsk

∗
s) known by the TP. The RL has the form:

{gsk∗r , . . . , gsk∗s ;TS;SignatureskTP
}

where TS is a timestamp that provides the date and time of
the list, and SignatureskTP

is the signature of the TP. The
nodes whose group private key gskr is in the RL, cannot
update their own gskr by design of the Update algorithm
[9], hence they are no more able to generate a valid proof of
membership.

C. Secret rotation

A node is able to update its identity keys (skid, pkid)
for key rotation purpose, and the respective DID and DID
Document, in full compliance with SSI paradigm, without the
need to update its gski. The node must only generate the new
proof when starting the authentication procedure with another
node of the network.

Differently, if the TP needs to update its keys
(skTP , pkTP ), the TP has to share the new pk′TP with all
the nodes, then sign with sk′TP and publish again the RL.

Moreover, if the TP needs to update its group secret
key tpsk for rotation purpose, the TP has to start a new
provisioning phase to provide all the nodes with new group
keys (i.e. gsk′i, gpk

′).

D. Network update

A new node can be deployed on the network without
disrupting the operation of the other nodes. The TP concludes
the JoinSE procedure with the new node and, then, shares
the group public key gpk, indexRL, and pkTP with it.

On the contrary, when a node is removed from the network
for any reason, the TP performs the Revoke algorithm and
publishes the new RL. This revocation action causes all the
other nodes to update their group keys.

It is worth noting that the BBS group signature scheme
provides a specific algorithm, named Open, that can be used
to trace a signature to a signer (i.e. retrieve a share of gskr of
the signer from a signature). This tools can be useful to detect
a misbehaving node (e.g. a compromised node) and revoke its
group private key gskr.

E. Critical Analysis

The following aspects are worth to be remarked:
• the solution is compliant with the SSI principles, since

it does not affect the autonomy of a node to control its
identity data (skid, DID, DID document);

• beside the provisioning phase where the TP provides
the group keys to every node, the solution respects the
decentralized nature of SSI;

• the revocation of a group private key implies some
operations to be executed by all the other nodes (i.e. they
check the latest RL to update their group private keys
gski and public key gpk with the Update algorithm);

• the TP can be identified as a single point of attack.
Both private keys skTP and tpsk must be properly
protected. An adversary gaining access to those secrets
can add a malicious node to the network and revoke the
capability of a legitimate node to make valid proofs of
membership. The JoinSE protocol offers a protection
against the adversaries willing to generate a valid proof
of membership on behalf of another node, since the TP
does not know the full gski;

• the solution scales as the number of nodes increases.
However, each revocation triggers the update of the group
keys in all the other nodes. Notably, the size of the RL
could grow with the number of revocations;



• the solution ensures total flexibility for the node to deal
with its DIDs. In fact, once a node is provisioned with
a valid gski, it can freely create and update its DIDs,
proving that they are in a trusted set by means of the
BBS signature. Notably, the signature has a constant size
and there is not a trade-off between the dimension of the
proof and other parameters of the solution;

• the security of the BBS group signature scheme relies on
the Linear assumption and on the Strong Diffie-Hellman
assumption. As a consequence, it can be considered
vulnerable to attack by quantum computers [15];

• finally, this solution is based on an already well-
established and mature construction (i.e. the BBS
scheme), that can be used with minor modifications.

IV. PERFORMANCE ESTIMATION

The feasibility of the two solutions is here addressed
by estimating and comparing their computational load and
expected performances on a target IoT node (i.e. Raspberry
Pi® 4 Model B, 4 GB RAM, 1.5 GHz processor [16]).

This work adopts the same methodology applied in [17]
to estimate and to compare the execution time of the crypto-
graphic operations in the four different operational phases.

First of all we have measured on the selected IoT node
the execution time of the specific cryptographic algorithms
heavily used as elemental building blocks in the two solutions
under evaluation (i.e. hash computation, scalar multiplication,
exponentiation, and pairing). Table I shows the results of
measurements assuming a 128-bit security level.

The initial benchmark shows that the sha256 hash com-
putation lasts 4 µs and it is the less expensive cryptographic
algorithm, whereas the paring computation lasts 50.4 ms and
it is the most expensive one, as expected. As an additional
remark, the results in Table I are consistent with the values
reported in [17], taking into account the different processor
clock speed of the target nodes (i.e. 1.5 GHz versus 1.2 GHz).

These results are the basis for estimating and comparing
the execution time of the two proposed solutions, as reported
in the following subsections.

A. Results for Merkle tree-based solution

The Merkle tree-based solution implies a computational
load proportional to the size of the tree that, according to
the structure in Fig. 3, depends on the number of leaves on
the tree (i.e. DIDs).

Let us denote the number of leaves with k. This value is
the key parameter to estimate the execution time in the four
operational phases. In fact, it corresponds to the number of
seeds si to be generated by the HKDF and to the number of
inputs to the hash algorithm to derive the indexes of the DIDs
(i.e. leaves of the Merkle tree). In addition, the number of
leaves k has an impact on the computational load to generate
the Merkle tree, to create a proof of membership using the
proper siblings and to verify a proof of membership given the
siblings.

TABLE I
BENCHMARK RESULTS FOR SPECIFIC CRYPTOGRAPHIC ALGORITHMS

Cryptographic Algorithm Notation Time (ms)
Hash computation (sha256) h 0.004
Scalar multiplication in G1 m 4.6
Exponentiation in GT e 33.6
Ate pairing e P 50.4

TABLE II
ESTIMATED PERFORMANCE FOR MERKLE TREE-BASED SOLUTION

Operational Phase Estimated Computations Time (ms)
Provisioning h(4k + 1) 0.516
Operation (Proof) h(4k + 1) 0.516
Operation (Verify) h(log2(k) + 1) 0.024
Secret Rotation none or h(4k + 1) ≤ 0.516
Network Update none 0

TABLE III
ESTIMATED PERFORMANCE FOR BBS-BASED SOLUTION

Operational Phase Estimated Computations Time (ms)
Provisioning 2m 9.2
Operation (Proof) h+ 5m+ 2(2 ⋆m) + 3 ⋆ e 75.7
Operation (Verify) h+ 4(2 ⋆m) + 4 ⋆ e+P 115.3
Secret Rotation none or 2m ≤9.2
Network Update none or 2 ⋆m ≤5.4

Table II reports the number of required computations and
the estimated execution times for the selected IoT node,
assuming a Merkle tree with 32 leaves (i.e. k = 32). These
results neglect the operations executed by the TP and other
operations with a limited impact on the computational load
of the node (e.g. random number generations). The rows of
Table II represents the operational phases; it must be noted
that the Operation phase is split between the generation of
a proof of membership (i.e. Proof ) and its verification (i.e.
Verify), since they can be executed by two distinct nodes (i.e.
n1 and n2, as explained in Section II-B).

The generation of k seeds si with HKDF requires, accord-
ing to [10], the following computations:

• 2h for the initial HKDF-Extract function, and
• 2hk to generate k seeds with HKDF-Expand function.

Moreover, the generation of a Merkle tree from k seeds
requires 2k − 1 hash computations and, thus, a time equal to
h(2k − 1).

From these remarks, it is possible to state that the Provi-
sioning phase consists in the generation of k seeds with HKDF
plus the construction of a Merkle tree and, thus, it requires
2h+ 2hk + h(2k − 1) = h(4k + 1).

On the other hand, the verification of a proof of membership
implies h(log2(k) + 1) to compare the siblings against the
ROOT value.

Assuming that each node stores only a single master secret
S and regenerates the seeds si and the Merkle tree on the fly
when needed, thus avoiding the secure storage of the entire
set of DIDs, the number of computations, hence the execution
times, can be derived in the same way.



B. Results for BBS-based solution

The computation load for the BBS-based solutions has
been estimated by considering the analytical results in [17].
Table III shows the number of required computations and the
estimated execution times for the selected IoT node.

This work considers all the optimizations suggested in [17],
especially the general low level optimizations proposed in
[18], the optimal Ate pairing implementation in [19], and the
suggestions in Section 6 of [9] to eliminate all the pairings in
the computation of a BSS signature and to perform only one
pairing to verify a signature.

Moreover, the BBS scheme requires several multi-scalar
multiplication and exponentiation operations, with a remark-
able computational load. For this reason, Table III denotes a
multi-scalar multiplication in G1 with ℓ ⋆ m, while a multi-
scalar exponentiation in GT is denoted as ℓ⋆e, where ℓ is the
total number of multiplication or exponentiation operations to
be executed. For example, the second row of Table III reports
a double scalar multiplication as 2 ⋆m, while 3 ⋆ e denotes a
triple exponentiation.

This work considers also an optimization of these multi-
scalar multiplication and exponentiation operations using a
generalization of the Shamir’s trick [20] that, according to
[17], allows accelerating these computations by a factor equal
to 2ℓ+1−1

3×2ℓ−1 .
It must be noted that the results about the Operation phase

(both Proof and verify) include a sha256 digest computation
that is executed before running the BBS Sign and V erify
algorithms, respectively, according to Section III-B.

V. COMPARATIVE ANALYSIS

The two proposed approaches show some similarities.
Both solutions take advantage of mature building blocks (i.e.
Merkle tree, HKDF, and BBS algorithms) and both comply
with SSI principles (i.e. they do not interfere with the decision
of a node to create, update or revoke a DID, just add the
mechanism to prove that the DID belongs to an evolving
trusted set). Moreover, both solutions respect the decentralized
nature of SSI, because, apart from the initial provisioning
phase, they do not strictly require other direct interactions
between the TP and the nodes.

The TP is a single point of attack in both solutions, but with
a difference. In the Merkle tree-based solution, an adversary
capable to gain access to skTP can arbitrarily compromise the
list of trusted roots; in the BBS-based solution the adversary
must gain access also to tpsk to be able to add a malicious
node to the network, or to revoke the capability of a legitimate
node to make valid proofs of membership. In any case, a
compromised TP has not direct access to the critical secrets
of the nodes, especially their identity private keys skid.

The main difference between the two solutions resides in
the provisioning phase. In the Merkle tree-based solution a
node builds on its own the knowledge to generate the proof of
membership (i.e. the Merkle tree). In the BBS-based solution
the TP generates and provides that knowledge to the node (i.e.
gski). The tpsk is the secret underpinning the group scheme.

When the TP needs to update tpsk, for rotation purpose,
the TP must start a new provisioning phase with all single
nodes. In the former solution the nodes cyclically refresh their
secrets (i.e. the Merkle trees) and share the ROOT values
with the TP during the operation phase without interrupting
their operation. Moreover, the adoption of a group signature
scheme implies a less efficient revocation procedure, because
it requires all nodes to update their group keys gski and gpk
every time the TP revokes a group private key. However, apart
from these disadvantages, the BBS-based solution provides
full flexibility in DID creation, ensures a constant size for the
proof that a DID belongs to a trusted set and does not impose
any design constraint on the DID update. In fact, a node can
potentially generate on the fly an unlimited number of DIDs,
without the need to find a trade-off between the Merkle tree
size and the number of interactions with the TP.

As far as the performance of the two solutions is concerned,
the Merkle tree-based solution clearly outperforms the BBS-
based solution in all the considered operational phases, espe-
cially in the Operation (Verify) and Network Update phases. It
mainly relies only on fast hash computations and it does not
require pairing computation at every verification or specific
update operations at every revocation.

For these reasons, the Merkle tree-based approach can be
considered the most appropriate solution for IoT networks. On
the other hand, the BBS-based solution could be of interest
for possible use cases that require a constant/small size for the
proof of membership in order to minimise the data exchange
between nodes.

VI. CONCLUSIONS AND FUTURE WORKS

This paper has proposed an alternative (mutual) authentica-
tion process for a network of IoT nodes leveraging SSI. The
main idea is to complement the DID-based verification of the
identity private key ownership with the verification of a proof
of membership during the (mutual) authentication process.
The paper has analyzed two membership solutions, a novel
solution designed by the Authors based on Merkle trees and
a second solution built as an adaptation of the BBS group
signature scheme. The performance evaluation has provided
an estimate of the computational load on an IoT node for
each method, while the comparative analysis has highlighted
the advantages and drawbacks of both solutions.

Future works will focus on (i) the adoption of threshold
signature schemes to reduce the impact of a possible attack
to the TP, and (ii) the adoption of dynamic accumulators and
their properties to build another possible alternative.
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